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Entropy and Melt Fracture 

R. T. BALRIER, College of Engineering and Appl ied Science,  University of 
Wiscons in ,  Milwaukee,  W i s c o n s i n  53201 

Synopsis 
The onset of a well-known flow instability commonly called “melt fracture” has 

remained one of the fundamental unsolved problems of polymer rheology. This work 
attempts to explain this phenomenon via a criterion based upon limitations to configura- 
tional entropy as dictated by  the second Iaw of thermodynamics. I t  is shown that the 
molecular orientation resulting from a sustained stress-deformation rate field may be 
sufficient to affect the entropy balance of the sy5teni to the point of violation of the 
second law. The flow field then spontaneously changes, producing the condition called 
melt fracture, in a manner such as to prevent the violation of this law. Other theories 
on the mechanism of melt fracture are discussed in the context of the above criterion. 

INTRODUCTION 

Melt fracture is a rather drastic encrgy-absorbing change in a normal 
laminar flow field. In a sense, it is like the onset of turbulence; but unlikc 
turbulence, its onset does not appear correlatablc with any gcneralizcd 
Reynolds number. Also, it is a phcnomcnon unique to macromolecular 
fluids, since it appears never to have been observed with Newtonian fluids. 
Its magnitudc as measured by amount of surfacr irregularity tends to in- 
crease with increasing capillary diamctor and cone inlet angle and to de- 
crease with increasing LID ratio.’ Thr various mechanisms proposed in 
the literature to explain mclt fracture havc bccn reviewed by 1’earsonl2 and 
the reader is referred to this article for a complete background. Only ccr- 
tain important existing theories will be discusscd here for purposes of com- 
parison. 

It appears reasonably certain that mclt fracture is the result of some 
form of tube flow instabilitp.2 A few flow field stabilities can be predicted 
from a mathematical stability analysis of the governing cquations. 3 , 4  For 
example, the laminar-turbulent transition for flows in channels and tubes 
and the onset of the Taylor laminar secondary flow instability can be esti- 
mated by looking for mathematical instabilities in the governing momentum 
equations. BBrnard convection5 cells correspond to a thermal instability in 
the combined energy and momentum equations. Recently, Serrin,6 Davis 
and von K e r c z ~ k , ~  Gurtin,* and others have developed a stability theory 
based upon an cncrgy criterion for stability alone. Pearson and Pctrieg 
have attempted to mathematically analyze the stability of non-Newtonian 
tube flows using a variety of constitutive equations. 
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Experimentally, melt fracture has been studied by numerous investiga- 
tors.9-25 The onset of this phenomenon appears to be able to occur almost 
anywhere within the flow in a capillary system, with “inlet,” “land,” and 
“exist” fracture points having been ~ b s e r v e d . ~ ~ ~ O * ’ ~  Once the flow field has 
changed into a “fractured” state, it appears never to spontaneously reverse 
back to the normal laminar state further downstream, except possible in 
systems with very large L I D  ratios. Further, no one appears ever to have 
observed the onset of melt fracture in initially turbulent non-Newtonian 
flows or in Newtonian flows of any type. It normally occurs in small 
diameter, low Reynolds number, high shear rate, non-Newtonian flows. 

THE FIRST LAW OF THERMODYNAMICS: THE 
CONSERVATION OF ENERGY 

The first law of thermodynamics and the conservation of energy state- 
The first law is ment are not identical concepts as is sometimes implied. 

simply an energy balance on an arbitrary system, which word form is 

Net Energy Net Energy Net Energy 

the System 
the1 = Gain by 1 ( 1 )  

Whereas the conservation of energy states that 

Net Production i the System i of Energy by = 0 

and eqs. (1) and (2) combined give the normal Clausius statement of the 
first law. The “balance” concept for an entity is a remarkably primitive 
and powerful tool of physical analysis. It is completely general and uni- 
versally valid. 

THE SECOND LAW OF THERMODYNAMICS : 
ENTROPY IS NOT CONSERVED 

The balance statement can be applied to any concept, even entropy: 
Net Entropy Net Entropy Net Entropy 

(3 1 

However, this balance is not a statement of the second law of thermody- 
namics. Entropy is not a conserved quantity, it can be produced and 
destroyed by a system. The second law states that the net entropy pro- 
duction must be positive definite for every real process (it can be zero only 
for a reversible process), i.e.; 

Net Entropy 
Production by a >O. (4) 

Real System I 
Thus, the second law corresponds more to the conservation of energy state- 
ment, whereas the first law is just a balance statement which incorporates 
the conservation principle. 
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D I R E C T I O N  

Fig. 1. Schematic diagram of flow through a capillary. 

Since entropy is not conserved, the entropy balance does not reduce to a 
simpler form (except for reversible processes, which do not occur in reality). 
And since the entropy production is almost always unknown, the entropy 
balance (which is a scalar equation) is relatively useless for calculating any- 
thing except the entropy production itself. Consequently, the second law 
statement currently enjoys relatively little engineering utility since a 
balance statement cannot generally be used to solve for a system unknown 
(such as heat transfer rate or mass flow rate) unless again, of course, the 
often impractical assumption of rcversibility is made. Equation (4) can be 
used to check gross effects, such as whether or not a certain system will 
operate in a certain way; but because of the inequality, it does not yield 
specific quantitative information. 

The entropy balance can be developed into a mathematical equation in 
the following manner: During some time interval clt, let 8ST be the net 
entropy transported into the system, ?isp, be the net entropy produced by 
the system (note 8Sp 2 0) and dS, be the net gain in entropy of the system. 
(We let 8( ) denote an inexact differential and d( ) denote an exact dif- 
ferential, e.g., see ref. 26). Thus, over time interval dt ,  eq. (3) takes the 
form 

8ST + 8sp = 8sS,. 
Dividing eq. ( 5 )  by the time interval dt gives the "rate" form of the balance 
equation : 

where ST = 8 s T / d t ,  and so forth. 
form : 

( 5 )  

S T  + s p  = S G  (6) 
The second law now takes the following 

s p  2 0. (7) 
Consider now a simple flow system in the absence of magnetic and electric 

field effects and chemical reactions such as shown in Figure 1 with a single 
inlet (a) and a single exit (b). It can be shownz6 that in such a system, 
entropy can only be transported across the system boundary by two modes : 
heat transfer and mass transfer. Thus, 

where I,,, dA is a surface integral over the system boundary; q is the 

boundary heat flux (Q/Area); T is the absolute temperature a t  the system 



3130 BALMER 

boundary (the integral reduces to Q/T for an isothermal boundary 
with a constant heat flux); s, and s b  are the average specific entropies a t  the 
entrance and exit cross sections, respectively; and m is the mass flow rate 
(the same a t  the exit as it is a t  the entrance by virtue of the conservation of 
mass). 

Now, in a steady flow situation, there is no net gain or loss of entropy by 
the ‘system; thus, eq. (6) reduces to (the literature contains more complex 
entropy production equations, e.g., ref. 27, p. 599, from which one could 
possibly glean additional relevant information) 

or 

We adopt a sign convention such that heat transfer into the system is posi- 
tive. 

In  a system such as shown in Figure 1, the flow of a macromolecular 
material from (a) to (b) will tend to increase the net molecular orientation 
partially owing to the increase in magnitude of the uniform stress field and 
partially owing to the increase of surface area to volume ratio resulting in 
interfacial configurational effects. The fundamental work of Boltzmann 
and others in statistical thermodynamics has shown that any molecular 
orientation whatsoever corresponds to a state of lower entropy than that of a 
purely random totally disoriented molecular ~ t a t e . ~ ~ , ~ ~  Then clearly, for a 
system such as that shown in Figure 1, the entropy a t  (b) can easily be less 
than the entropy a t  (a), and sb - sa will be negative. Brownian motion of 
the molecules themselves will tend to randomize the system; and if the flow 
is slow enough, this effect may dominate with the result of no net orienta- 
tion, and thus no difficulties with the second law. However for fast flows 
of very large macromolecules, the Orientation effect could be very pro- 
nounced, yet eq. (9) must not be violated. Equation (9) will allow for a net 
entropy reduction if there is heat transfer out of the system, but there can be 
no net orientation effects if the system is well insulated or if heat is actually 
transferred into the system. 

What happens to the flow as the Brownian motion has less and less success 
in keeping the macromolecules disorientated as the stress field continues to 
increase? Since eq. (9) cannot be violated, only two possible alternatives 
exist: (1) The macromolecules break into smaller molecules which are 
more susceptible to Brownian forces; or (2) the main flow field itself changes 
in such a way as to reduce or eliminate molecular orientation. The first we 
call molecular degradation; the second we call melt fracture. This clearly 
explains why melt fracture is never observed with Newtonian (or low 
molecular weight) fluids, but is observed with pure polymers and polymer 
solutions. 
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THE SECOND LAW AND THE ONSET OF MELT FRACTURE 

Since eq. (9) allows for heat flow either into or out of the fluid, and since 
entropy is a monotonic function of temperature, the following conditions 
serve to define unique flow situations. 

q < 0 and Tb - T ,  5 0; the fluid looses heat to the capillary, and 
the temperature remains constant or decreases. Here, the last term in eq. 
(9) is positive, and S, will be positive until the first term dominates over the 
second. In  this case, S b  < sa (due mainly to orientation effects), and the 
entropy production will become negative when the mass flow rate exceeds 
the critical value: 

Case 1. 

3 d A .  1 
mc = ( s x )  1 . s .  T 

This critical mass flow rate defines the onset of melt fracture for this case. 
q < 0 and Tb - T ,  > 0; the fluid looses heat, but more heat is 

generated internally than is dissipated and the fluid temperature rises. 
In  this case, two possibilities exist. The last term in eq. (9) is still positive, 
but the increase in fluid temperature and the resulting increase in Brownian 
activity may prevent sufficient molecular orientation from taking place; 
thus, If this happens, melt fracture, as 
defined here, is impossible since S, will always be positive. Secondly, if 
the temperature does not effect the entropy enough to prevent an increase in 
orientation a t  the exit over the inlet, melt fracture will occur a t  the critical 
flow rate defined in eq. (10). 

q 2 0 and Tb - T ,  5 0; the fluid is either insulated, or else heat is 
added through the capillary n-alls and the fluid temperature either decreases 
or is constant. Here, the last term in eq. (9) is neGative, and thus it is 
impossible for sb to be less than s, without violation of the second law. 
However, as the flow rate increases from zero with no temperature increase 
in the fluid, sb continually decreases because of molecular orientation with 
increasing shear field magnitude. Again, melt fracture begins a t  the critical 
mass flow rate given by eq. (lo), but the conditions defining this case appear 
to be somewhat unrealistic in practice.28 

Case 4. q 2 0 and T ,  - T ,  > 0 ;  the fluid is either insulated, or else heat 
is added through the capillary walls and the fluid temperature increases from 
inlet to exit. Here again, the last term in eq. (9) is negative, and again it is 
impossible for s b  to be less than s,. However, this is perfectly normal since 
the rising temperature can conceivably override the shear field effect on the 
entropy. Thus, generally, it appears that melt fracture does not normally 
occur in this case, but i t  is not impossible for it to occur here. 

If the 
inlet and exit entropies could be held constant, melt fracture should occur a t  
a lower mass flow rate when heat is added to the fluid from an external 
source'. The problems of measuring and maintaining a given entropic 
value in a polymeric system are, however, considerable. 

Case 2. 

may not become less than s,. 

Case 3. 

Comparing cases 1-4 above suggests a meaningful experiment. 
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This approach to melt fracture easily explains the effect of inlet geometry 
on the onset of melt fracture. In the normal experimental situations (case 1 
or case 2 above), the heat flow is out of the fluid, and thus the onset of melt 
fracture corresponds to the critical mass flow rate given by eq. (10). In the 
case of a 180" entry angle, the entering entropy s, is greater than that of, 
say, a 20" entry angle because the shear field (and thus the molecular orien- 
tation) is higher with the smaller entry angle. Then, for decreasing s,, eq. 
(10) predicts a larger mass flow rate at the onset of melt fracture. 

That molecular orientation actually exists in the capillary is demonstrated 
by the flowing birefringence work on dilute polymer solutions by Eirich28 
and on polymer melts by Dexter and Miller30 and others31 (the very existence 
of flowing birefringence implies molecular o r i e n t a t i ~ n ~ ~ ) .  Further, Furu- 
kawa et al.33 have shown that increasing the melt draw ratio outside 
the capillary increases the molecular orientation within the final filament. 
Schreiber et al.34 have suggested a molecular orientation mechanism based 
upon the observations of macroscopic deformable particles suspended in 
sheared fluids. These particles tend to migrate toward a region of low shear 
gradient via presumably hydrodynamic forces.35 Han36 has recently 
shown with flowing birefringence that as a melt exits a capillary it carries 
with it a residual elastic stress (and thus orientation) which gives rise to a 
nonzero exit pressure. 

CROCCO'S THEOREM 

As an example of the influence of entropy on a flow, consider Crocco's 
theorem. Crocco3' has shown that in a nonviscous fluid without body 
forces, vorticity can be produced in a steady flow only through some phe- 
nomenon which will generate gradients of entropy or stagnation enthalpy. 
If we somehow had a nonviscous flow of orienting macromolecules, we could 
invoke Crocco's theorem and say that, since an entropy gradient existed in 
our flow, we should expect some vorticity to be generated. The swirling, 
or helical-like, flow in melt fracture establishes that it has developed an axial 
vorticity component, whereas normal laminar capillary flow has only an 
angular vorticity component. There is, in fact, a great deal of similarity 
between the observations of the characteristics of melt fracture and the 
known hydrodynamic effects of vorticity. 

The vorticity equation for a general incompressible fluid with conserva- 
tive body forces has the form 

D.Ti, _ _  - (6 . V) v + % x (G.d)  
Dt P 

where Z = ? X is the vorticity vector, d is the deviatoric stress tensor, 
and p is the velocity vector. The last term in eq. (11) represents the dif- 
fusion 0f;vorticity through the fluid by means of the stress field which allows 
vortex lines to cross stream lines. Thus, the stress field, which is the 
macroscopic manifestation of the macromolecular orientation, also in- 
fluences the vorticity directly. 
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THE STORED ELASTIC ENERGY THEORY 

There exists a large literature, apparently begun by Weissenberg and 
Herzog38 in 1928, which revolves around the concept of elastic strain energy 
stored in a flowing medium. In  the 1930’s, Eisenschitz and P h i l i p p ~ f f ~ ~  
and Philippoff 4o and others began to establish this concept experimentally. 
In  the late 1940’s and early 1950’s, Wei~senberg~~ and 1 l o 0 n e y ~ ~  established 
the concept of an elastic recoverable shear strain in shear flows. In  the 
mid-1950’~~ Roberts,43 Lodge,44 and Philippoff 45,46 discovered the rclation- 
ships between flowing birefringence and stress fields, and Philippoff, 
Gaskins, and B r ~ d n y a n ~ ~ - ~ ~  related flowing birefringence to the recoverable 
shear strain field. In  the late 1950’s and early 1960’s, Philippoff and Gas- 
kinsm and Bagley51a52 correlated the capillary elastic-end correction factor 
with the recoverable shear strain with an equation of the form 

e = n + Sr/2 (12) 

where e is the Bagley end-correction factor, n is the Couette correction 
factor and, Sr is the recoverable shear strain. More recently,  balm^^^ has 
developed the relationship between the Bagley end-correction factor and 
the fluid properties for an Oldroyd rate-type fluid. 

Bagleysl argues that the onset of melt fracture corresponds to a critical 
value of the recoverable shear strain, thus maintaining that the origin of 
melt fracture lies in the stored elastic energy of the flow. Regardless of the 
macroscopic rheological model used to explain elastic fluid behavior, it 
appears quite clear that this “elasticity” is derived on a molecular level 
from strained primary and secondary atomic bonds and that the shear field 
in a capillary flow operates in a manner such as to orientate large entangled 
molecules parallel to the flow direction. 

SHEAR FRACTURE THEORY 

Spencer and Dillon’O originally suggested that the onset of melt fracture 
corresponded to an isoelongated molecular state. Tordella’s’ birefringence 
work shows that melt fracture begins a t  the site of maximum elastic strain. 
H ~ t t o n ~ ~  and Han and L a m ~ n t e ~ “ ~ ~  hold the view that liquid can literally 
fracture in shear, i.e., that there is a limit to the amount of elastic shear 
strain that, a liquid can withstand, and all energy above this limit that is put 
into the liquid is converted into new surface free energy. 

CRITICAL CONTINUUM PARAMETER THEORY 

Since it is clear that the normal Reynolds number is not a critical param- 
eter in predicting the onset of melt fracture,2 researchers have been search- 
ing for another appropriate dimensionless parameter. 

White,z3,57 by a dimensional analysis technique, has concluded that melt 
fracture should occur a t  a critical value of the Weissenberg number. Bal- 
mer and K a u z l a r i ~ h , ~ ~  on the other hand, show that the momentum equa- 
tions for a converging power law elastic fluid have a singularity a t  a Deborah 
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number equal to  unity, and suggest that this indicates the onset of melt 
fracture. Others2 also feel that it is the fluid acceleration in the entry 
region that is critical and thus are led to  a Deborah number of unity as the 
critical parameter in predicting the onset of melt fracture. 

The Deborah number was introduced by Reiner58 and has come to 
mean6Ov6l the ratio of the material time constant t, (such as the relaxation 
time) to the process time t p ,  and it has the characteristic that it must be less 
than or equal to unity (the equality corresponds to pure elastic, nondissipa- 
tive behavior) : 

At this point in time, a critical continuum parameter theory such as this 
does not conflict with the configurational entropy criterion presented here. 
In  fact, since eq. (13) must always be obeyed by a material (since it can 
never respond to a process faster than its natural response time), i t  can be 
taken as a restricted statement of the second law. It can be thought of as a 
“practical” statement of the second law of thermodynamics similar to those 
of Clausius, Kelvin, and Plank, which dealt with engines and the flow of 
heat. 

CONCLUSIONS 

It is proposed that melt fracture may be a direct consequence of the 
second law of thermodynamics wherein the key parameter is the configura- 
tional entropy of the macromolecule. An entropy balance provides an 
equation which predicts the mass flow rate a t  the onset of melt fracture in 
terms of the system heat transfer and entropy change. It is suggested by 
this theory that melt fracture could occur anywhere in the flow field; at the 
capillary inlet (inlet fracture), within the capillary (land fracture), or even 
a t  the capillary exit* (the limiting case of land fracture). Current macro- 
scopic theories on stored elastic energy or critical Weissenberg or Deborah 
numbers are found to be compatiblc with the present configurational en- 
tropy theory. 
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